Deep self-consistent learning of local volatility
نویسندگان
چکیده
منابع مشابه
Consistent Ranking of Multivariate Volatility Models
A large number of parameterizations have been proposed to model conditional variance dynamics in a multivariate framework. This paper examines the ranking of multivariate volatility models in terms of their ability to forecast out-of-sample conditional variance matrices. We investigate how sensitive the ranking is to alternative statistical loss functions which evaluate the distance between the...
متن کاملlearning style, self efficacy and intrinsic motivation as predictors of iranian ielts reading comprehension
this thesis attempts to measure learning styles, self efficacy and intrinsic motivation as predictors of iranian ielts reading comprehension. in order to address this issue, a quantitative study was conducted on some randomly selected intact students at ferdowsi university. these two groups were assigned as they were undergraduate (ba=91) and graduate (ma =74) students; they were all aged betwe...
Deep supervised learning using local errors
Error backpropagation is a highly effective mechanism for learning high-quality hierarchical features in deep networks. Updating the features or weights in one layer, however, requires waiting for the propagation of error signals from higher layers. Learning using delayed and non-local errors makes it hard to reconcile backpropagation with the learning mechanisms observed in biological neural n...
متن کاملDeep nets for local manifold learning
The problem of extending a function f defined on a training data C on an unknown manifold X to the entire manifold and a tubular neighborhood of this manifold is considered in this paper. For X embedded in a high dimensional ambient Euclidean space R, a deep learning algorithm is developed for finding a local coordinate system for the manifold without eigen–decomposition, which reduces the prob...
متن کاملDeep Learning without Poor Local Minima
In this paper, we prove a conjecture published in 1989 and also partially address an open problem announced at the Conference on Learning Theory (COLT) 2015. For an expected loss function of a deep nonlinear neural network, we prove the following statements under the independence assumption adopted from recent work: 1) the function is non-convex and non-concave, 2) every local minimum is a glob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Social Science Research Network
سال: 2021
ISSN: ['1556-5068']
DOI: https://doi.org/10.2139/ssrn.3989177